Simulating an interacting gauge theory with ultracold Bose gases.
نویسندگان
چکیده
We show how density dependent gauge potentials can be induced in dilute gases of ultracold atoms using light-matter interactions. We study the effect of the resulting interacting gauge theory and show how it gives rise to novel topological states in the ultracold gas. We find in particular that the onset of persistent currents in a ring geometry is governed by a critical number of particles. The density-dependent gauge potential is also found to support chiral solitons in a quasi-one-dimensional ultracold Bose gas.
منابع مشابه
Ultracold Molecules from Ultracold Atoms: Interactions in Sodium and Lithium Gas
The thesis presents results from experiments in which ultracold Sodium-6 and Lithium-23 atomic gases were studied near a Feshbach resonance at high magnetic fields. The enhanced interactions between atoms in the presence of a molecular state enhance collisions, leading to inelastic decay and loss, many-body dynamics, novel quantum phases, and molecule formation. Experimental data is presented a...
متن کاملGround-state pressure of quasi-2D Fermi and Bose gases.
Using an ultracold gas of atoms, we have realized a quasi-two-dimensional Fermi system with widely tunable s-wave interactions nearly in a ground state. Pressure and density are measured. The experiment covers physically different regimes: weakly and strongly attractive Fermi gases and a Bose gas of tightly bound pairs of fermions. In the Fermi regime of weak interactions, the pressure is syste...
متن کاملThe physics of dipolar bosonic quantum gases
This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the longrange, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the meanfield r...
متن کاملGauge fields for ultracold atoms in optical superlattices
We present a scheme that produces a strong U(1)-like gauge field on cold atoms confined in a two-dimensional square optical lattice. Our proposal relies on two essential features, a long-lived metastable excited state that exists for alkaline-earth or Ytterbium atoms, and an optical superlattice. As in the proposal by Jaksch and Zoller [New Journal of Physics 5, 56 (2003)], laser-assisted tunne...
متن کاملFractional quantum Hall physics with ultracold Rydberg gases in artificial gauge fields
We study ultracold Rydberg-dressed Bose gases subject to artificial gauge fields in the fractional quantum Hall (FQH) regime. The characteristics of the Rydberg interaction give rise to interesting many-body ground states different from standard FQH physics in the lowest Landau level. The nonlocal but rapidly decreasing interaction potential favors crystalline ground states for very dilute syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 8 شماره
صفحات -
تاریخ انتشار 2013